Math 246A Lecture 30 Notes ## Daniel Raban December 7, 2018 ## 1 Conclusion of Perron's Solution to the Dirichlet Problem ## 1.1 Limit of a maximal subharmonic function on the boundary of a domain Let Ω be a bounded domain, and let f be real-valued on $\partial\Omega$ with $|f| \leq M$. We have that $V_f = \{v : v \text{ subharmonic in } \Omega, \limsup_{x \to \zeta} v(z) = f(\zeta) \ \forall \zeta \in \partial\Omega \}$. Let $u_f(z) = \sup [v(z) : v \in V_f \}$. Last time, we showed that u_f is harmonic. Also recall the notion of regular points we introduced last lecture. A point $\zeta \in \partial \Omega$ is regular if there exists w(z) which is continuous on $\overline{\Omega}$, harmonic on Ω , w(z) > 0 on $\overline{\Omega} \setminus \{\zeta\}$, and $w(\zeta) = 0$. **Theorem 1.1.** If ζ is regular and f is continuous at ζ , then $\lim_{z\to\zeta} u_f(z) = f(\zeta)$. Proof. Step 1: $\limsup_{z \to \zeta_0} u_f(z) \le f(\zeta_0) + \varepsilon$. Take $\delta > 0$ such that $|\zeta - \zeta_0| < \delta$. There exists $\alpha > 0$ such that $w(z) - w(\alpha) > 0$ in $\Omega \setminus B(z_0, \delta)$, where w is from the definition of a regular point. Let $W(z) = f(\zeta_0) + \varepsilon + w(z)/\alpha(M0f(\zeta_0))$. W is continuous on $\overline{\Omega}$ and harmonic on Ω . If $\zeta \in B(\zeta_0, \delta)$, then $\limsup_{z \to \zeta_0} q(z) = f(\zeta) + \varepsilon \ge f(\zeta)$. If $\zeta \in \Omega \setminus B(\zeta_0, \delta)$, then $W(z) \ge M - f(\zeta_0) + f(\zeta_0) + \varepsilon \ge M + \varepsilon$. Then for $v \in V_f$, $v \le W$ by the maximum principle. Therefore, $u_f \le W$. So $\limsup_{z \to \zeta_0} u_f(z) \le f(\zeta_0) + \varepsilon$. Step 2: $\liminf_{z \to \zeta_0} u_f(z) \ge f(\zeta_0) - \varepsilon$: Let $V = f(\zeta_0) - \varepsilon - w(z)/\alpha(M + f(\zeta_0))$. Then V is continuous on $\overline{\Omega}$ and is harmonic on Ω . If $\zeta \in B(\zeta_0, \delta)$, then $V(\zeta \le f(\zeta_0 - \varepsilon \le f(\zeta))$. If $\zeta \in \overline{\Omega} \setminus B(\zeta_0, \delta)$, then $V(\zeta) \le -M - \varepsilon \le f(\zeta)$. So if $v \in V_f$, $v \ge V$. Then $u_f \ge \liminf_{z \to \zeta_0} u_f(z) \ge \liminf_{z \to \zeta_0} V(z) \ge f(\zeta_0) - \varepsilon$. **Remark 1.1.** The converse is true, as well. If this is true for all $f \in C(\partial\Omega)$, then ζ is regular.